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Abstract

The interactions among multiple parallel sliding cracks in rock materials are examined asymptotically in an explicit

and quantitative manner in order to reveal fully their so-called shielding and magnification effects on the complete

stress–strain relation. Based on the micromechanical framework and the asymptotic analysis, analytical upper and

lower bounds are proposed for the complete stress–strain relation for rock masses containing multiple rows of echelon

cracks. The present model studies further influence of both the interaction among crack rows and mutual collinear

interaction on the constitutive relation and strength for a crack-weakened rock mass. The closed-form explicit

expression for the complete stress–strain relation of rock masses containing echelon cracks subjected to compressive

loads is obtained. The complete stress–strain relation includes the stages of linear elasticity, nonlinear hardening, strain

softening. The results show that the complete stress–strain relation and the strength of a crack-weakened rock mass

depend on the crack interface friction coefficient, the sliding crack spacing, the fracture toughness of rock materials,

orientation of cracks, the crack half-length and the crack density parameter.
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1. Introduction

There are a great number of cracks in rock and rock-like materials. Their existence and interaction often

lead to high stress concentration and become the source of weakening and failure of rock and rock-like

materials.

Efforts have been made to study the mechanism governing degradation and failure of a crack-weakened

rock mass under compressive loads. Two main approaches are often used to research the constitutive
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relation of a crack-weakened rock mass. The first is the phenomenological approach based on continuum

damage mechanics (Hudson and Priest, 1983; Oda, 1984; Kawamoto et al., 1988; Shao et al., 1999), in

which the effects of microscopic damage mechanisms on properties of rock masses are reflected by scalar,

vector or tensor damage variables. Significant advances have been made in understanding the onset,
development, and stabilization of failure around boreholes and tunnels. However, it typically requires

extensive testing to determine the relevant constitutive law and parameters as well as the strength and

yielding criteria. Since such testing is not always possible in petroleum or mining situations, it has always

been desirable to incorporate the simplest possible constitutive relations allowing simulation of at least the

onset of instability. The second approach is based on micromechanical damage mechanics, which leads to

an improved understanding of the underlying physical process.

In the micromechanical approach, the nucleation, growth and coalescence of microcracks are studied

and their influences on mechanical properties are reflected in the constitutive relation in certain ways (Zhou
et al., 2004). Up to now, the micromechanical damage models for a crack-weakened rock mass reported in

the open literature are mainly limited to the pre-peak nonlinear hardening regime (Steif, 1984; Namet-

Nasser and Obata, 1988; Kemeny, 1991; Deng and Nemat-Nasser, 1992a,b; Nemat-Nasser and Deng, 1994;

Ravichandran and Subhash, 1995; Basista and Gross, 1998; Li et al., 2000a,b).

To study the mechanical behaviors of a crack-weakened rock mass by the micromechanical approach,

several micromechanics-based crack models, such as the cylindrical pore model (Zhang et al., 1990), dis-

location pile-up model (Wong, 1990) and the frictional sliding crack model have been proposed. Among

these models, the frictional sliding crack model is widely accepted (Steif, 1984; Ashby and Hallam, 1986;
Namet-Nasser and Obata, 1988; Kemeny, 1991; Deng and Nemat-Nasser, 1992a,b; Nemat-Nasser and

Deng, 1994; Ravichandran and Subhash, 1995; Niu and Wu, 1998; Basista and Gross, 1998; Li et al.,

2000a,b; Brencich and Gambarotta, 2001; Zhou et al., 2004).

Some of the studies of rock masses containing multiple cracks are based upon the dilute distribution

condition where the interaction among the cracks can be neglected. Under this assumption, the constitutive

relation can be given in explicit forms. The schemes that are based on the dilute distribution approximation

and which neglect the interaction among cracks are only capable of simulating the actual situation accu-

rately at very low levels of the crack density. On the other hand, if the interaction among cracks is taken
into account, a rigorous solution can be sought numerically, but the final numerical results, which may be

very accurate, are of limited use. Therefore, one simple way to model rock-like materials containing

multiple cracks is to assume that the cracks are arranged in a regular pattern so that some approximate, but

accurate analytical expressions can be obtained to estimate the overall behaviors of rock-like materials. In

many cases, the crack distribution in the rock mass can often be simplified or normalized to the plane

periodical collinear cracks or echelon cracks.

Although various methods have been proposed to predict the constitution relation and the strength of

rock masses containing multiple cracks, accuracy of these methods cannot be judged due to a lack of proper
bounds. It should be noted that the upper and lower bounds for the overall Young’s modulus of bodies

containing multiple parallel random cracks were proposed by Wang et al. (2000a,b). But their bounds

cannot be used for the case of the complete stress–strain relation of rock masses containing echelon cracks

subjected to compressive loads.

In this paper, based on the frictional sliding crack model and the internal variable approach (Basista

and Gross, 1998), we attempt to obtain the upper and lower bounds on the complete stress–strain rela-

tion of a rock mass containing echelon cracks subjected to compressive loads. For this, the so-called

‘‘shielding’’ and ‘‘magnification’’ interaction effects among the multiple cracks are examined. Through this
examination of interaction effects, the upper and lower bounds on the complete stress–strain relation for a

crack-weakened rock mass are obtained in concise explicit forms. Although only the two-dimensional

problem is considered in this paper, the principle is believed to be equally applicable to the three-dimen-

sional case.
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2. Constitutive relation for a crack-weakened rock mass

In a rock material, the frictional sliding on the crack surfaces plays a central role in either inelastic

deformation or cracking, sliding causes dilatation by opening the crack at asperities and by inducing local
tensile crack at some angle to the crack. Thus, the shear stress on the crack serves as the driving force of

inelastic deformation and the material become pressure-sensitive.

The onset of macroscopic inelastic deformation in rock materials is typically attributed to the activation

of frictional sliding over the faces of preexisting cracks. During this phase, the only energy dissipating

mechanism is the frictional sliding in the shearing mode. The local tensile cracks are induced by the sliding

of the initial crack as compressive loads reach a certain critical value. During this phase, the energy is

dissipated on the frictional sliding on preexisting flaw and on the growth of wing cracks. During the above

two phases, rock materials exhibit nonlinear hardening behavior.
Due to interaction among cracks, some local tensile cracks propagate further in an unstable manner,

causing a decrease of capacity of material bearing the compressive loads, inducing behavior of the strain

softening of rock materials. During this phase, rock materials exhibit strain softening response.

The total strain increment may be splitted into elastic strain increment part de0ij, which is the strain

increment in the intact rock material, and the inelastic strain increment part demij , which account for the

inelastic deformation of the preexisting cracks and their preferential growth, i.e.
deij ¼ de0ij þ demij ð1Þ
The elastic strain increment is defined by
de0ij ¼ S0
ijkldrkl ð2Þ
where S0
ijkl is the elastic compliance tensor of the matrix material.

The inelastic strain increment will be formulated within the thermodynamic framework with internal

variables by Rice (1971). The Rice’s thermodynamic framework is expressed as
demij ¼
1

V0

X ofaðr; T Þ
@rij

dna ð3Þ
where faðr; T Þ is a set of thermodynamic forces conjugated to the internal variable na, rij is stress tensor, H
represents symbolically the current collection of values of na, V0 denotes the volume of a representative

volume element (RVE), the summation in (3) extends over all sites of the RVE where the microstructural

rearrangement takes place.

2.1. The frictional sliding under compression

Consider an infinite plate containing echelon arrays of cracks. Establish the global coordinate system

ðo� x1 x2Þ and the local coordinate system ðo1 � x01 x02Þ, in which x01-axis is parallel to the normal vector n,
as shown in Fig. 1. The half length of the crack is a, and the angle of local coordinate x01 against the global
coordinate x1 is h.

During the phase of the activation of frictional sliding on the faces of the preexisting cracks, influence of

the interaction among cracks on the deformation of rock masses can be neglected. The expression for the

resolved stresses in the local coordinate system ðx01; x02Þ is
rr
22 ¼ r11 cos

2 hþ r22 sin
2 h

sr12 ¼ 1
2
ðr11 � r22Þ sin2 h

�
ð4Þ
where r11, r22 are all positive.



Fig. 1. The mechanical model for rock masses containing multiple rows of echelon cracks subjected to compressive loads.
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The effective shear stress that drives the frictional slip on the surface of preexisting cracks can be ex-

pressed as
seff ¼ ðr11 � r22Þ cos h sin h� sc � lðr22 sin
2 hþ r11 cos

2 hÞ ð5Þ
where sc is the cohesion and l the coefficient of dry friction.

It can be seen that (5) predicts the onset of sliding when seff ¼ 0.

If seff 6 0, a crack-weakened rock mass exhibits the properties of linear elasticity.

The average slip �b0 of the points on pp1 is equal to the average Mode II crack opening displacement

induced by seff , Hence
�b0 ¼
paseffð1� m20Þ

E0

ð6Þ
where E0 and m0 are the Young’s modulus and Poisson’s ratio of the intact rock material.

The specific complementary energy can be decomposed as
wðr;HÞ ¼ w0ðrÞ þ Dwðr;HÞ ð7Þ
where w0ðrÞ ¼ 1
2
rijS0

ijklrkl, S0
ijkl is the elastic compliance tensor of the matrix material.

The inelastic part of the specific complementary energy due to frictional sliding is equal to the area

average of the work done by the actual shear traction along pp1 on the slip displacements
Dwðr;HÞ ¼ 1

A0

Z a

�a

Z b0ðx02Þ

0

sr12ðr; �b0Þdbdx02 ð8Þ
where A0 denotes the area of the representative surface element.

If b0ðx02Þ ¼ �b0, expression (8) can be rewritten as
Dwðr; �b0Þ ¼
2a
A0

Z �b0

0

sr12ðr; �b0Þd�b0 ð9Þ
The inelastic change of can be computed by
diw ¼ @ðDwðr; �b0ÞÞ
@�b0

¼ 2a
A0

sr12d�b0 ð10Þ



X.-p. Zhou et al. / International Journal of Solids and Structures 41 (2004) 6173–6196 6177
From (3) and (10), the increment of the inelastic strain in this phase takes the following explicit form:
dem111
dem122

� �
¼ x0

sin 2h
� sin 2h

� �
d~b0 ð11Þ
where the normalized slip ~b0 ¼ �b0=a, x0 ¼ Na2=A0 is the initial crack density parameter, N is the number of

cracks, A0 denotes the area of the representative surface element.

2.2. Crack kinking under compression

Under higher compression, however, it has been experimentally observed that some cracks may prop-

agate into the matrix material in a nonself-similar fashion. These kinked cracks tend to line up in the

direction paralleled to the axial compression, further they typically grow gradually with increasing axial
compression in a stable manner until a certain critical length is attained, at which unstable growth begins

and results in ultimate failure of rock masses.

An exact analytical solution of stress field for the curvilinear wing crack configuration has been given by

Nemat-Nasser and Horii (1982) in terms of a singular integral equation. As the solution is complicated,

Horii and Nemat-Nasser (1986) suggested that the curvilinear wing cracks can be approximated by straight

ones, as shown in Fig. 2a. To study the behavior of the sliding crack under compression, the frictional

sliding crack proposed by Horii and Nemat-Nasser (1986) is further represented by a tensile crack of qq1
whose orientation u is yet to be determined from maximization of KI of a length of 2l subjected at its center
to a pair of splitting forces F ¼ 2aseff as shown in Fig. 2b.

Then the KI and KII factors at q and q1 in the crack configuration depicted in Fig. 2b are given by
KI ¼ F sinuffiffiffiffiffiffiffiffiffiffiffi
pðlþl�Þ

p �
ffiffiffiffiffi
pl

p
½r11 cos

2ðhþ uÞ þ r22 sin
2ðhþ uÞ�

KII ¼ � F cosuffiffiffiffiffiffiffiffiffiffiffi
pðlþl�Þ

p �
ffiffiffiffiffi
pl

p
1
2
ðr11 � r22Þ sin 2ðhþ uÞ

� �
8<
: ð12Þ
where l� ¼ 0:27a was introduced in Horii and Nemat-Nasser (1986) to make KI and KII nonsingular when

the tensile crack length is small.

To facilitate analysis, the actual curvilinear wing crack will be further simplified by a straight opened

crack growing parallel to the direction of maximum principal compressive stress r11. these simplifications

are necessary in order to make the micromechanical modelling simple enough for engineering use.

The SIFs (12) takes the simpler form
KI ¼ F cos hffiffiffi
pl

p � r22

ffiffiffiffiffi
pl

p

KII ¼ � F sin hffiffiffi
pl

p

(
ð13Þ
where F ¼ 2aseff .
l
F

F q

q1

x2

x/
2x1x/
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Fig. 2. Frictional sliding crack model with: (a) simplified geometry of tensile wing crack and (b) splitting forces.
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The SIFs (12) and (13) are based on the dilute distribution condition where the interaction among the

cracks is neglected. For curvilinear winged cracks, the interaction among cracks can be solved only

numerically. However, if the approximate model with straight wings and a pair of splitting forces is ac-

cepted, then the asymptotic analysis can be applicable. To obtain an explicit closed-form expression of
constitutive relation for rock masses containing the plane echelon cracks under compressive loads, the

asymptotic analysis including the interaction among the crack rows up to a certain degree of accuracy is

performed, and the mutual interaction among the collinear sliding cracks is considered in terms of the work

by Tada et al. (1973).

The sliding crack spacing is 2w, the perpendicular distance between two adjacent rows is H , as shown in

Figs. 3 and 5.

On the basis of the asymptotic analysis, the interaction among the crack rows for the periodic rectan-

gular array of cracks and for the diamond-shaped array of cracks under unidirectional tension is obtained
by Wang et al. (2000a,b). In this paper, we have extended their works to the straight winged cracks with a

pair of splitting forces. However, we need to make a simplifying assumption that splitting forces F can be

approximated by the stresses due to a constant normal r0
22 and shear loading, where r0

22 ¼ F cos h
2l , s012 ¼ F sin h

2l
are simply the equivalent uniform distributions of F along the length of crack. Experimental observations

have suggested that the crack growth is almost mode I (Ashby and Hallam, 1986), then it is assumed that

s012 can be neglected (Ashby and Hallam, 1986; Kemeny, 1991; Deng and Nemat-Nasser, 1992a,b; Nemat-

Nasser and Deng, 1994; Li et al., 2000a,b; Zhou et al., 2004).

For the periodic rectangular array of sliding cracks depicted in Fig. 4, the interaction among the sliding
crack rows can be solved, the constant pseudo-tractions over the crack faces can be obtained as (see

Appendix A)
Fp ¼ 1þ 4 sin2 pl
2w e

�ðH=wÞp 1þ H
w p

� �� ��1
r0
22 ¼ ArF cos h

2l ¼ Fpr cos h

rpr
22 ¼ 1þ 4 sin2 pl

2w e
�ðH=wÞp 1þ H

w p
� �� ��1

r22 ¼ Arr22

8<
: ð14Þ
2w

H

11

22

σ

σ

Fig. 3. The doubly periodic rectangular array of sliding cracks.
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Fig. 5. The diamond-shaped array of sliding cracks.
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Fig. 4. The equivalent doubly periodic rectangular array of sliding cracks.
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where
F ¼ 2aseff ;Ar ¼ 1

�
þ 4 sin2 pl

2w
e�ðH=wÞp 1

	
þ H

w
p


��1

; Fpr ¼
FAr

2l
:

The constant pseudo-tractions were obtained under the first-order approximation. For a2=ð2wHÞ6 0:25,
the above results are valid. From the analysis of the crack interactions in Appendix B, it is found that the

rectangular array will have the strongest shielding effect. The stress intensity factors for mode I at the crack
tips for the periodic rectangular array becomes
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KI ¼
Fpr cos hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w sin pl

w

q � rpr
22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w tan

pl
2w

r
ð15Þ
For the diamond-shaped array of cracks depicted in Fig. 6, the constant pseudo-tractions over the crack

faces can be written as (see Appendix A)
Fp ¼ 1� 4 sin2 pl
2w e

�ðH=wÞp 1þ H
w p

� �� ��1
r0
22 ¼

AdF cos h
2l ¼ Fpd cos h

rpd
22 ¼ 1� 4 sin2 pl

2w e
�ðH=wÞp 1þ H

w p
� �� ��1

r22 ¼ Adr22

(
ð16Þ
where
Ad ¼ 1

�
� 4 sin2 pl

2w
e�ðH=wÞp 1

	
þ H

w
p


��1

; Fpd ¼
AdF
2l
The constant pseudo-tractions are found to be dependent on geometry of the crack arrays. The above

results are valid, provided the crack density parameter a2=ð2wHÞ6 0:58. If a2=ð2wHÞP 0:58, this level of
crack density is probably beyond the range of applicability of current asymptotic analysis, and also

probably beyond the range of applicability of any existing analytical method. In accordance with the

analysis of the crack interactions in Appendix B, it is found that the diamond-shaped array of cracks will

have the strongest magnification effect.

The stress intensity factors for mode I at the crack tips for the diamond-shaped array is (see Appendix A)
KI ¼
Fpd cos hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w sin pl

w

q � rpd
22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w tan

pl
2w

r
ð17Þ
The crack instability condition is
KI ¼ KIC ð18Þ
where KI is the mode I SIF and KIC is the fracture toughness of rock materials.
F

F

F

Fig. 6. The equivalent diamond-shaped array of sliding cracks.
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For the periodic rectangular array of sliding cracks, the normalized crack length ~l ¼ l=a can be com-

puted from (15) and (18). Similarly, for the diamond-shaped array of sliding cracks, the normalized crack

length can be obtained from (17) and (18).

When the interaction among the crack rows is neglected, due to equilibrium condition in the cross-
section qpp1q1 and the Mohr–Coulomb condition for the frictional sliding activation of the preexisting

crack faces, the effective shear stress that drives the frictional sliding activation on the preexisting crack

faces in this phase is obtained by balancing the force along initial slit pp1 (Zhou et al., 2004):
seff2 ¼
ffiffiffiffiffi
pl

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w sin pl

w

q seff �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w tan pl

2w

q
ffiffiffiffiffi
pl

p r22
~l cosu ð19Þ
When the interaction among the crack rows is taken into account, the effective shear stress that drives the

frictional sliding activation on the preexisting crack faces in this phase is obtained as
seff2 ¼
ffiffiffiffiffi
pl

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w sin pl

w

q Aseff �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w tan pl

2w

q
ffiffiffiffiffi
pl

p Ar22
~l cosu ð20Þ
where ~l ¼ l=a, A ¼ Ad for the diamond-shaped array of sliding cracks and A ¼ Ar for the periodic rect-

angular array of sliding cracks.

The average slip �b1 of points on pp1 is equal to the average mode II crack opening displacement induced

by seff2, hence
�b1 ¼
1

2a

Z a

�a

4ð1� m20Þseff2
E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x022

q
dx022 ¼ paseff2ð1� m20Þ

E0

ð21Þ
When the interaction among the crack rows is neglected, according to Eqs. (19) and (21), the normalized

slip ~b1 is determined by (Zhou et al., 2004)
~b1 ¼
pð1� m20Þ

E0

ffiffiffiffiffi
pl

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w sin pl

w

q seff

0
B@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w tan pl

2w

q
ffiffiffiffiffi
pl

p r22
~l cosu

1
CA ð22Þ
When the interaction among the crack rows is considered, the normalized slip ~b1 is determined by
~b1 ¼
pAð1� m20Þ

E0

ffiffiffiffiffi
pl

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w sin pl

w

q seff

0
B@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w tan pl

2w

q
ffiffiffiffiffi
pl

p r22
~l cos h

1
CA ð23Þ
During this phase, the inelastic portion of the specific complementary energy can be written as
Dwðr;HÞ ¼ 2a
A0

Z �b1

0

s012ðr; �b1Þd�b1 þ
2

A0

Z l

0

Gðr; lÞdl ð24Þ
where s012 ¼ Asr12
ffiffiffiffiffi
pl

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w sinðpl=wÞ

p
� Ar22

~l cosu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w tanðpl=2wÞ

p
=

ffiffiffiffiffi
pl

p
, Gðr; lÞ ¼ ð1�m2

0
ÞK2

I

E0
, A ¼ Ad for the

diamond-shaped array of sliding cracks and A ¼ Ar for the periodic rectangular array of sliding cracks.

The inelastic change of wðr;HÞ can be defined as
diw ¼ @ðDwÞ
@�b1

d�b1 þ
@ðDwÞ
@l

dl ¼ 1

A0

½2as012d�b1 þ 2Gðr; lÞdl� ð25Þ
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According to Eq. (3), the inelastic part of the strain increment is determined by
dem211
dem222

� �
¼ x0A

ffiffiffiffiffi
pl

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w sinðpl=wÞ

p sin 2h
� sin 2h

0
@

1
Ad~b1 þ

8x0pð1� m20Þ~w tan pl
2w

E0

A2 0

r22

� �
d~l

þ x0
0

�2 cos h

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w tanðpl=2wÞ

p
ffiffiffiffiffi
pl

p A~ld~b1

0
B@ þ

4ð1� m20Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 tan pl

2w

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin pl

w E0

q Aseff1d~l

1
CA ð26Þ
where seff1 ¼ Fpd
2a for the diamond-shaped array of sliding cracks, seff1 ¼ Fpr

2a for the periodic rectangular array
of sliding cracks, A ¼ Ad for the diamond-shaped array of sliding cracks and A ¼ Ar for the periodic

rectangular array of sliding cracks, ~w ¼ w
a.

The strength r11max and r22max of rock masses with the diamond-shaped array of sliding cracks can be

determined from Eqs. (17) and (18). Similarly, the strength r11max, r22max of rock masses with the periodic

rectangular array of sliding cracks can be determined from Eqs. (15) and (18). The strength of a rock mass

with the periodic rectangular array of sliding cracks is obviously higher than that with the diamond-shaped

array of sliding cracks.

The inelastic part of the strain increment at the strength failure point can be given by
dem211
dem222

� �
¼ x0A

ffiffiffiffiffi
pl

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w sinðpl=wÞ

p sin 2h
� sin 2h

� �
d~b2 þ

8x0pð1� m20Þ~w tan pl
2w

E0

A2 0

r22max

� �
d~l

þ x0
0

�2 cos h

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w tanðpl=2wÞ

p
ffiffiffiffiffi
pl

p A~ld~b2

0
B@ þ

4ð1� m20Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w tan pl

2w

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w sin pl

w

q
E0

Aseff1maxd~l

1
CA ð27Þ
where
~b2 ¼
pAð1� m20Þ

E0

ffiffiffiffiffi
pl

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w sin pl

w

q seff1max

0
B@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w tan pl

2w

q
ffiffiffiffiffi
pl

p r22max
~l cos h

1
CA
~w ¼ w
a and seff1max ¼ Fpdmax

2a for the diamond-shaped array of sliding cracks, seff1max ¼ Fprmax

2a for the periodic

rectangular array of sliding cracks.

2.3. The stage of strain-softening

Under the condition of strain-controlled loading, a crack-weakened rock mass exhibits the behavior of

strain-softening. The behavior of strain-softening is caused by cracks experiencing unstable growth, During

the stage of strain-softening, the criterion (18) should be satisfied by cracks experiencing unstable growth.

The relation between l and rij can be obtained approximately from the criterion (18) of unstable growth of

cracks. The formulae of the inelastic portion of the specific complementary energy during the stage of

strain-softening have the same form as those during the stage of nonlinear hardening.

The inelastic part of the strain increment during the stage of strain-softening can be expressed as
dem311
dem322
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where
~b3 ¼
pAð1� m20Þ

E0
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3. Example predictions for the complete stress–strain relation of rock masses under uniaxial compression

3.1. The complete stress–strain relation of rock masses with the doubly periodic rectangular array of sliding

cracks

For the doubly periodic rectangular array of sliding cracks, the dependence of the complete stress–strain

relation on the crack interface friction coefficient l, the sliding crack spacing 2w, the perpendicular distance
between the two adjacent row H and the fracture toughness of rock materials KIC is investigated. In

simulations, the parameters E0 ¼ 45 GPa, m0 ¼ 0:25, sc ¼ 0:49 MPa.
3.1.1. The dependence of the complete stress–strain relation on the friction coefficient l
Here, we seek to investigate the effect of friction on the growth direction of interacting tension cracks.

Since the effective shear stress that drives the frictional slip on the surface of preexisting cracks, defined in

Eq. (5), is decreased as the friction between the surfaces of preexisting cracks is increased, the length of the

tension cracks driven by the driving force, F ¼ 2aseff , is decreased at a given load. Numerical predictions

(Shen et al., 1995) suggested that the coefficient of friction l affects the path of wing crack propagation.

Their works showed that deviation of the direction of wing cracks from the line of preexisting cracks

decreases with the increase of the coefficient of friction l. The above conclusion agrees with experimental
observations (Shen et al., 1995; Wong and Chau, 1998). In other words, the tension cracks curve less to-

ward each other for larger coefficients of friction. In order to make the micromechanical modeling simple

enough for engineering, it is assumed that the wing cracks are parallel to the direction of the axial com-

pression. The assumption is an acceptable approximate one (Zhou et al., 2003).

In simulations the parameters h ¼ 60�, a=w ¼ 1:25, H=w ¼ 1, and the fracture toughness of rock

materials is KIC ¼ 0:857 MPa
ffiffiffiffi
m

p
. Fig. 7 shows the results for l ¼ 0:6, 0.9 and 1. It is noted that the

predicted compressive strength is sensitive to different values of the crack interface friction coefficient l, The
predicted compressive strength is higher as the crack interface friction coefficient l is larger. The shapes of
the complete stress–strain curves are similar for low-, normal-, and high-strength materials. A high-strength

material behaves in a linear fashion to a relatively higher stress level than a low-strength material. The

complete stress–strain relation includes the stages of linear elasticity, nonlinear hardening and strain

softening.
3.1.2. The dependence of the complete stress–strain relation on a=w
In simulations, the parameters h ¼ 60�, KIC ¼ 0:857 MPa

ffiffiffiffi
m

p
, the crack interface friction coefficient

is l ¼ 0:8, and a=H ¼ 1. Fig. 8 shows the results for a=w ¼ 5=6, 1.0 and 1.25. It is noted that the pre-

dicted compressive strength is sensitive to different values of a=w when the neighboring tips of two col-

linear sliding cracks are close to each other. The predicted compressive strength decreases with the decrease

of the sliding crack spacing 2w. This implies that a crack-weakened rock mass is more stable as the sliding

crack spacing 2w is larger. The shapes of the complete stress–strain curves are similar for a=w ¼ 5=6,
1.0 and 1.25.
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Fig. 7. The dependence of the complete stress–strain relation on the crack interface friction coefficient l for the doubly periodic

rectangular array of sliding cracks.
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Fig. 8. The dependence of the complete stress–strain relation on a=w for the doubly periodic rectangular array of sliding cracks.
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3.1.3. The dependence of the complete stress–strain relation on H=w
In simulations, the parameters h ¼ 60�, KIC ¼ 0:857 MPa

ffiffiffiffi
m

p
, the crack interface friction coefficient is

l ¼ 0:8, a=w ¼ 1:25. Fig. 9 shows the variation of the complete stress–strain curve with the perpendicular

distance between the two adjacent row H . It is obvious that the predicted compressive strength is dependent
on different values of the perpendicular distance between the two adjacent row when the stacked interaction

can not be neglected. The strong shielding effect is associated with interactions among the crack rows. The

predicted compressive strength increases with decreasing the perpendicular distance between the two

adjacent row H . The above result implies that a crack-weakened rock mass is more stable as the perpen-

dicular distance between the two adjacent row H is smaller. The shapes of the complete stress–strain curves

are similar for H=w ¼ 1, 2 and 3.
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Fig. 9. The dependence of the complete stress–strain relation on H=w for the doubly periodic rectangular array of sliding cracks.
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3.1.4. The dependence of the complete stress–strain relation on the fracture toughness of rock materials

KIC

In simulations, the parameters h ¼ 60�, a=w ¼ 1:25, H=w ¼ 1, and the crack interface friction coefficient

is l ¼ 0:8. Fig. 10 shows the results for KIC ¼ 0:7, 0.857 and 1.0 MPa
ffiffiffiffi
m

p
. It is clear that the predicted

compressive strength is sensitive to different values of the fracture toughness KIC. The predicted compressive

strength is higher as the fracture toughness of rock materials is larger. The shapes of the complete stress–

strain curves are similar for low-, normal-, and high-strength materials. A high-strength material behaves in
a linear fashion to a relatively higher stress level than a low-strength material.
3.1.5. The dependence of the complete stress–strain relation on the orientation of cracks h
In simulations, the parameters sc, E0, m0 have all been defined previously, KIC ¼ 0:857

MPa
ffiffiffiffi
m

p
, a=w ¼ 1:25, H=w ¼ 1, and the crack interface friction coefficient is l ¼ 0:8. Fig. 11 shows that

orientation of cracks affects the complete stress–strain relation and the strength for a crack-weakened rock

mass.
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Fig. 10. The dependence of the complete stress–strain relation on the fracture toughness of rock materials for the doubly periodic

rectangular array of sliding cracks.
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Fig. 11. The dependence of the complete stress–strain relation on h for the doubly periodic rectangular array of sliding cracks.
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3.2. The complete stress–strain relation of rock masses with the diamond-shaped array of sliding cracks

For the diamond-shaped array of sliding cracks, the dependence of the complete stress–strain relation on
the crack interface friction coefficient l, the sliding crack spacing 2w, the perpendicular distance between

the two adjacent row H and the fracture toughness of rock material KIC is investigated. In simulations, the

parameters E0 ¼ 45 GPa, m0 ¼ 0:25, sc ¼ 0:49 MPa. Compared to the doubly periodic rectangular array of

sliding cracks, the strong magnification from diamond-shaped array of sliding cracks results in the lower

strength and the larger deformation for a rock mass.
3.2.1. The dependence of the complete stress–strain relation on the friction coefficient l
In simulations, the parameters E0, m0, sc have all been defined previously, h ¼ 60�, a=w ¼ 1:25, H=w ¼ 1,

and the fracture toughness of rock materials is KIC ¼ 0:857 MPa
ffiffiffiffi
m

p
. Fig. 12 shows the results for
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Fig. 12. The dependence of the complete stress–strain relation on the crack interface friction coefficient l for the diamond-shaped array

of sliding cracks.
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l ¼ 0:8, 1 and 1.2. It can be seen that the complete stress–strain curves are dependent on the friction

coefficient l.
3.2.2. The dependence of the complete stress–strain relation on the fracture toughness of rock materials KIC

Fig. 13 shows the results for KIC ¼ 0:8 MPa
ffiffiffiffi
m

p
with l ¼ 0:8, h ¼ 60�, H=w ¼ 1 and a=w ¼ 1:25. It is

observed from Fig. 13 that the predicted compressive strength is sensitive to different values of the fracture

toughness KIC. The predicted compressive strength increases with increasing the fracture toughness of rock

materials depicted in Fig. 13.
3.2.3. The dependence of the complete stress–strain relation on H=w
In simulations, the parameters l ¼ 0:8, a=w ¼ 1:25, KIC ¼ 0:857 MPa

ffiffiffiffi
m

p
and h ¼ 60�. Fig. 14 shows

the variation of the complete stress–strain curve with H=w. In Fig. 14, when H=ð2wÞ6 1, influence of the

interaction among cracks on the strength and deformation is significant. The results are consistent with the

works of Wang et al. (2000a,b).
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Fig. 13. The dependence of the complete stress–strain relation on the fracture toughness of rock materials for the diamond-shaped

array of sliding cracks.
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Fig. 14. The dependence of the complete stress–strain relation on H=w for the diamond-shaped array of sliding cracks.
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3.2.4. The dependence of the complete stress–strain relation on a=w
Fig. 15 shows the results for a=w ¼ 1, 1.25 and 0.65 with l ¼ 0:8, KIC ¼ 0:857 MPa

ffiffiffiffi
m

p
, a=H ¼ 1 and

h ¼ 60�. It can be seen in Fig. 15 that the peak and residual strength of a rock mass increases with

increasing the sliding crack spacing. The shapes of the complete stress–strain curves are sensitive to different
values of a=w.
3.2.5. The dependence of the complete stress–strain relation on orientation of cracks h
In simulations, the parameters E0, m0, sc have all been defined previously, a=w ¼ 1:25, H=w ¼ 1, l ¼ 0:8

and the fracture toughness of rock materials is KIC ¼ 0:857 MPa
ffiffiffiffi
m

p
. Fig. 16 shows the results for h ¼ 45�,

60� and 70�. It is obvious that the shapes of the complete stress–strain curves are sensitive to different values

of orientation of cracks h.
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Fig. 15. The dependence of the complete stress–strain relation on a=w for the diamond-shaped array of sliding cracks.
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Fig. 16. The dependence of the complete stress–strain relation on h for the diamond-shaped array of sliding cracks.
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4. Example predictions for the strength of a crack-weakened rock mass under uniaxial compression

For the doubly periodic rectangular array of sliding cracks and the diamond-shaped array of sliding

cracks, the dependence of the strength on the crack interface friction coefficient l, the sliding crack spacing
2w, the perpendicular distance between the two adjacent row H , the fracture toughness of rock materials

KIC and orientation of cracks h is investigated. In simulations, the parameters E0 ¼ 45 GPa, m0 ¼ 0:25,
sc ¼ 0:49 MPa. In Figs. 17 and 18, the strength of a crack-weakened rock mass is plotted against orien-

tation of cracks.
4.1. The dependence of the strength on the friction coefficient l for the doubly periodic rectangular array of

sliding cracks

In simulations, the parameters E0, m0, sc have all been defined previously, a=w ¼ 0:5, H=w ¼ 0:2, and the

fracture toughness of rock materials is KIC ¼ 0:857 MPa
ffiffiffiffi
m

p
. Fig. 17 shows the results for l ¼ 0:4, 0.55 and

0.8. It is clear from Fig. 17 that the strength of a crack-weakened rock mass is sensitive to different values of
the crack interface friction coefficient l and orientation of cracks h. The strength of a jointed rock mass
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Fig. 17. The dependence of the strength on the friction coefficient l for the doubly periodic rectangular array of sliding cracks.
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Fig. 18. The dependence of the strength on the friction coefficient l for the diamond-shaped array of sliding cracks.
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increases with increasing the crack interface friction coefficient l. The strength of a jointed rock mass

depends on orientation of cracks.

4.2. The dependence of the strength on the friction coefficient l for the diamond-shaped array of sliding cracks

In simulations, the parameters a=w ¼ 1, H=w ¼ 1, and the fracture toughness of rock materials is

KIC ¼ 0:857 MPa
ffiffiffiffi
m

p
. Fig. 18 shows the results for l ¼ 0:4, 0.55 and 0.8. From Fig. 18, it can be observed

that the strength of rock masses is sensitive to different values of the crack interface friction coefficient l and

orientation of cracks h. The strength of a jointed rock mass increases with increase in the crack interface
friction coefficient l. It is found that orientation of cracks affects the strength of a jointed rock mass.
5. Effect of the lateral confinement on interacting tension crack growth

The confining pressure tends to close the wing cracks and at the same time reduce the effective shear
stress that drives the frictional slip on the surface of preexisting cracks, defined in Eq. (5). Therefore, the

stress intensity factor at the tips of the compression-induced tension cracks is reduced with increasing the

lateral confinement. Thus, stress to nucleate the wing cracks is increased by confining pressure, the wing

crack length is decreased by the confinement, and the tension crack length reaches the common spacing at a

higher applied axial stress, as shown in Figs. 19 and 20. The wing cracks curve less toward each other when

confining pressure is increased (Deng and Nemat-Nasser, 1994; Zhou et al., 2003). The analytical results

and experimental observations show that axial splitting due to the propagation of a few dominant cracks

occurs under uniaxial compressive loads or biaxial compressive loads with low lateral compressive stress,
while failure by the formation of a single fault or multiple faults of cracks occurs in the presence of a

moderate confinement (Nemat-Nasser and Horii, 1982; Shen et al., 1995; Wong and Chau, 1998; Zhou

et al., 2003).
6. Engineering application

To show the application of the complete stress–strain relation for a crack-weakened rock mass, one

example is presented here. Underground caverns of the Ertan Hydroelectric Project were constructed in an
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Fig. 19. The dependence of the strength on confining pressure for the diamond-shaped array of sliding cracks when H ¼ 3, a ¼ 5,

w ¼ 3, l ¼ 0:5, KIC ¼ 0:857 MPa
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m

p
.
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orthoclase rock mass at the upriver of the Yalong River, Sichuan, China. The orthoclase has a blocky

structure, with three main sets of fractures. One set of fractures is dominant. The dominant discontinuities

are high in dip and relatively large in size. The structural parameters of the orthoclase were measured in the

field by the scan line method and the statistical window method, and their averages are listed in Table 1.

The fracture toughness of the orthoclase is KIC ¼ 0:857 MPa
ffiffiffiffi
m

p
. The Young’s modulus of the orthoclase is

E0 ¼ 45 GPa. The Poisson’s ratio of the orthoclase is m0 ¼ 0:25. The uniaxial compressive strength of the
orthoclase is 130 MPa. The shapes of the complete stress–strain curves is shown in Fig. 21. It is clear from

Fig. 21 that the uniaxial compressive strength of the rock mass is reduced to 27% of the intact rock because
Table 1

Dominant discontinuity data for the orthoclase at underground caverns of the Ertan Hydroelectric Project

Dip direction

(�)
Dip angle

(�)
Average length

(2a) (m)

Average spacing

ðwÞ (m)

Cohesion

(MPa)

Frictional angle

(�)
H
(m)

150 60 5 2.5 0.49 45 1
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Fig. 21. The complete stress–strain relation of rock masses at underground caverns of the Ertan Hydroelectric Project.
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of the existence of cracks. Based on Hoek–Brown criterion, Liu (1993) suggested that the uniaxial com-

pressive strength of the rock mass is 30% of the intact rock. This is in agreement with results obtained by

Liu (1993).
7. Discussion and conclusions

In this paper, the two-dimensional frictional sliding crack model has successfully been used to study the

constitutive relation of rock masses containing multiple rows of echelon cracks. The model reveals that the

nucleation, growth and coalescence of sliding cracks dominate the failure and macroscopic properties of a

crack-weakened rock mass under compressive loads.

Several simplifications had been made in the micromechanical modelling. For example, the effect of the
coefficient of friction l on the path of wing crack propagation is not taken into account. This simplification

is made primarily to make the micromechanical modeling simple enough for engineering use. In the analysis

in Section 2, an asymptotic analysis by Wang et al. (2000a,b) is modified to analyze the interaction of

straight winged cracks subjected to a pair of concentrated forces, the closed-form explicit expression for the

complete stress–strain relation of a rock mass containing the multiple parallel cracks subjected to com-

pressive loads is obtained.

The sliding crack model is initially a hypothetical model to analyze mechanical properties of brittle

materials under compression. With the development of the SEM, it is now revealed that sliding
cracks actually exist in brittle materials subjected to compressive loads, and the crack growth results in

failure of brittle materials. Hence, it is thought that the sliding crack model can be widely used to study

mechanical properties of brittle materials under compressive loads. By using the sliding crack model, the

present study reveals that the stress intensity factors and the overall strain depend on the crack configu-

ration, i.e. the periodic rectangular array of sliding cracks and the diamond-shaped array of sliding cracks,

and on the microscopic parameters, such as the initial crack length, the crack spacing, orientation of the

cracks and the crack density parameter. Finally, the present model is used to analyze the complete stress–

strain relation and strength for the jointed rock mass at underground caverns of the Ertan Hydroelectric
Project.
Acknowledgements

The authors thank Prof. Charles R. Steele and Prof. Marie-Louise Steele for helpful discussions.

Appendix A

Proof of Eqs. (15) and (17) in Section 2 is derived from the asymptotic analysis by Wang et al. (2000a,b).

For two-dimensional parallel cracks, We need to evaluate collinear and stacked interactions. In order to

consider the stacked interaction, we follow the superposition procedure of Karihaloo et al. (1996), and the

pseudo-traction technique (Horii and Nemat-Nasser, 1985; Wang et al., 2000a,b), the original problem can

be decomposed into a sequence of subsidiary problems in each of which only one row of collinear cracks is

considered. In terms of the concept of pseudo-reaction, suppose that the faces of each crack is subjected to a

distributed pseudo-traction rp
ijðx1Þ; x1 2 ð�l; lÞ. By superposition of the subsidiary problems, the traction

consistency condition on each crack in a subsidiary problem can be written as
rp
ijðx1Þ � 2

Xþ1

j¼1

Z l

0

Kijklðx1; xj1Þr
p
klðx

j
1Þ ¼ r0

ij; x 2 ½0; lÞ ðA:1Þ
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where rp
ijðx1Þ is the pseudo-traction on the crack faces, r0

ij is the applied stress.

Let us now examine the variations of Kijklðx1; xj1Þ in order to characterize the crack interactions. Firstly,

let the body be subjected to ro
22 6¼ 0. Under these loading conditions, we only study the nontrivial com-

ponent K2222ðx1; xj1Þ. The expression for K2222ðx1; xj1Þ was given by Karihaloo and Wang (1997)
K2222ðx1; xj1Þ ¼
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where z ¼ x1 þ ix2 ¼ x1 þ iðjHÞ, i ¼
ffiffiffiffiffiffiffi
�1

p
, j ¼ 1; 2; . . . ;þ1.

We aim to obtain an approximate closed-form solution of the integral equation (A.1) for the two arrays

in Figs. 4 and 6. To this end, we assume that the cracks are so distributed that the higher-order terms
(in comparison with terms of order 1) containing e�ðH=2wÞpð1P 4jÞ, e�nðH=2wÞp sinmðpl=2wÞ and

e�nðH=2wÞp sinmðpx1=2wÞ (nP 2j and mP 2) can be neglected. The asymptotic expressions for K2222ðx1; xj1Þ for
the two arrays of Figs. 4 and 6 are
Kr
2222ðx1; x

j
1Þ

Kd
2222ðx1; x

j
1Þ

( )
¼

�2 1þ 2j H
2wp

� �
2 1þ 2j H

2w p
� �
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2

w
e�2jðH=wÞp cos

pxj1
2w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 pl

2w
� sin2 pxj1

2w

s
ðA:3Þ
where the superscripts ‘r’ and ‘d’ refer to the rectangular and diamond-shaped array, respectively.

Substituting Eq. (A.3) into Eq. (A.1), we have
rp
22ðx1Þ � 2

Xþ1

j¼1

Z l

0

Kr
2222ðx1; x

j
1Þ

Kd
2222ðx1; x

j
1Þ

( )
rp
22ðx

j
1Þdx

j
1 ¼ r0

22 ðA:4Þ
As the kernels Kr
2222ðx1; x

j
1Þ and Kd

2222ðx1; x
j
1Þ in Eqs. (A.3) and (A.4) do not contain the variable x1, the

pseudo-tractions rp
22ðx1Þ which satisfy these equations must be independent of x1, that is, they must be

constant on the crack faces. Thus, rp
22ðx1Þ are given by
rpr
22

rpd
22

( )
¼

Ar

Ad

� �
r0
22 ðA:5Þ
where
Ad ¼ 1

�
� 4 sin2 pl

2w
e�ðH=wÞp 1

	
þ H

w
p


��1

;Ar ¼ 1

�
þ 4 sin2 pl

2w
e�ðH=wÞp 1

	
þ H

w
p


��1
When the stacked interaction is neglected, following works by Tada et al. (1973), the stress intensity factor

of crack array in Figs. 4 and 6 can be written as



6194 X.-p. Zhou et al. / International Journal of Solids and Structures 41 (2004) 6173–6196
KI ¼
F cos hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w sin pl

w

q � r22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w tan

pl
2w

r
ðA:6Þ
When both the stacked interaction and collinear interaction are taken into account, the stress intensity

factor of crack array in Figs. 4 and 6 can be expressed by Eqs. (15) and (17), respectively.

Appendix B

The strongest ‘‘magnification’’ interaction effects and the strongest ‘‘shielding’’ interaction effects for the

multiple parallel sliding cracks is proved by using the asymptotic analysis by Wang et al. (2000a,b).

For two-dimensional parallel cracks, we need to evaluate collinear and stacked interactions. Let us

suppose that the body contains a row of collinear cracks represented by the solid lines and that a new group

of cracks will emerge in the area adjacent to these represented by the broken lines as shown in Fig. 22. The

location of one of the newly-emerged cracks is represented by the line segment CD. We assume further that
the newly-emerged crack is of the same size as the existing cracks. Let us now examine the interaction

among the existing collinear cracks and the newly-emerged cracks. For this, we neglect the mutual collinear

interactions among the new cracks but concentrate on the interaction among the existing collinear cracks

and a single representative new crack, namely, crack CD.
Let uniform stress r0

22 be applied on crack surfaces, so that the opening stress pCDij ðx1;HÞ at potential

location of crack CD, which has to be annulled, can be expressed as
pCDij ðx1;HÞ ¼ T 0
ijklðx1;HÞr0

kl ðB:1Þ
where the components of T 0
ijklðx1;HÞ represent the stress components rijðx1;HÞ induced at point ðx1;HÞ

when the body containing the collinear cracks is subjected to uniform stress. Here, for simplicity of analysis,
2w

H

l

l

x1c 
C

D

l

l

x1

x2

Fig. 22. Interacting cracks. Solid lines represent existing cracks, and dashed lines represent emerging cracks.
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we shall ignore the multiple reflection effects of the crack CD and the collinear cracks. Taking the average of

pCDij ðx1;HÞ over the crack length 2l, we get
pCDij ðx1;HÞ
D E

¼ Tijklðx1c;HÞr0
kl ðB:2Þ
where x1c is the x1-coordinate of the center of crack CD, and
Tijklðx1c;HÞ ¼ 1

2l

Z x1cþl

x1c�l
T 0
ijklðx1;HÞdx1 ðB:3Þ
The transformation tensor Tijkl is related to the interaction among the cracks. Therefore, if the configu-
ration of the parallel cracks is such that the magnitude of the transformation tensor Tijkl, or at least the

magnitude of some of its major components, is maximized, then the interaction among the cracks will

create the maximum increase in deformation of a crack -weakened rock mass. On the other hand, If the

configuration of the parallel cracks is such that the magnitude of the transformation tensor Tijkl, or at least
the magnitude of some of its major components, is minimized, then the minimum increase in deformation

of a crack-weakened rock mass can be expected. These two extreme cases would correspond to the strongest

‘‘magnification’’ interaction effects and the strongest ‘‘shielding’’ interaction effects in the terminology

introduced by Kachanov (1992).
Let us now examine the variations of Tijklðx1c;HÞ in order to characterize the crack interactions. First, let

the body be subjected to ro
22 6¼ 0. Under these loading conditions, we only study the nontrivial component

T2222ðxc;HÞ. As T 0
ijklðx1;HÞ can be obtained in closed form from the formulae in handbook by Tada et al.

(1973), Tijklðx1c;HÞ can be easily calculated. T 0
ijkl are equivalent in form and effect to Kijkl. According to Eq.

(A.2), it is observed that T2222 and T 0
2222 attain their respective maxima at x1c ¼ w and x1 ¼ w, attain their

respective minima at x1c ¼ 0 and x1 ¼ 0. From the above observations, we can conclude that the crack CD
will experience the strongest shielding effect when it is situated immediately above one of the existing

collinear cracks and that it will experience the strongest magnification effect when it straddles two existing
collinear cracks below it. The effect of a natural configuration of multiple parallel cracks on the complete

stress–strain relation of a crack-weakened rock mass should be between these two extreme effects.
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